

		Skip to the content
		

			

				

					
						
							
								
																	
								Search
							
						

					
					

						The Web Dev
A site all about web development.

					

					
						
							
															
							Menu
						
					

				

				

					
							

									HTML
	CSS
	JavaScript
	Python
	Contact
	About the Site
	About the Author

							

						
						

						
							

								
									
																				Search
									
								

							

							
						

						
				

			

			

	

		

			
	
		
			Search for:		
		
	
	

			
				
					Close search				
							

		

	

		

		

	

		

			

				
					Close Menu
									

				
					

							HTML

	CSS

	JavaScript

	Python

	Contact

	About the Site

	About the Author

					

					
			

			

				
			

		

	

	

	

	

		
			
				
					Categories				
				
					JavaScript React				

			

			Add a PDF Reader to a React App with react-pdf-viewer

		

				
						
							
								Post author							
													
						
							By John Au-Yeung						
					
	
						
							
								Post date							
													
						
							February 29, 2020
						
					
	
						
													
						
							No Comments on Add a PDF Reader to a React App with react-pdf-viewer						
					

		

		
	

	

		

			
		

	

	
	

		

			

Spread the love

Adding React viewers is a common requirement for web apps. With React, there’s the react-pdf-viewer package that lets us add PDF viewers to React apps easily.

In this article, we’ll look at how to use it to add a PDF viewer to our React app.

Installation

We can install it by running:

npm install @phuocng/react-pdf-viewer

Basic Usage

After installing it, we can use it as follows:

import React from "react";
import Viewer, { Worker } from "@phuocng/react-pdf-viewer";

import "@phuocng/react-pdf-viewer/cjs/react-pdf-viewer.css";

export default function App() {
 return (
 <div className="App">
 <Worker workerUrl="https://unpkg.com/pdfjs-dist@2.2.228/build/pdf.worker.min.js">
 <div style={{ height: "750px" }}>
 <Viewer fileUrl="dummy.pdf" />
 </div>
 </Worker>
 </div>
);
}

In the code above, we included the CSS file that comes with the package, and the Viewer for opening the PDF viewer and the Worker component for loading the PDF specified in the fileUrl prop as in the background.

We have to include the workerUrl prop with that URL so that the worker in that location is run.

Then we’ll get a PDF viewer that has zoom in and out controls, page navigation, document properties, and download options.

In a Create React App project, static files like PDFs should be in the public folder so that it can be loaded. Also, PDFs have to be in the same domain as the React app so that we won’t get CORS errors.

Options

There’re options for customization. We can change the layout of the sidebar, toolbar, and replace default controls with React components of our choice.

Layout options available include:

	isSidebarOpened – boolean to indicate whether we want the sidebar to open or not
	main – the main part of the viewer (a Slot component object)
	toolbar – toolbar part (a RenderToolbar component object)
	sidebar – Slot object to define the sidebar of the viewer

For instance, we can write the following code to add a sidebar to display pages and a layout component do define a layout for our PDF viewer as follows:

import React from "react";
import Viewer, {
 Worker,
} from "@phuocng/react-pdf-viewer";

import "@phuocng/react-pdf-viewer/cjs/react-pdf-viewer.css";

export default function App() {
 const renderToolbar = (toolbarSlot) => {
 return (
 <div
 style={{
 alignItems: 'center',
 display: 'flex',
 width: '100%',
 }}
 >
 <div
 style={{
 alignItems: 'center',
 display: 'flex',
 }}
 >
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.searchPopover}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.previousPageButton}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.currentPageInput} / {toolbarSlot.numPages}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.nextPageButton}
 </div>
 </div>
 <div
 style={{
 alignItems: 'center',
 display: 'flex',
 flexGrow: 1,
 flexShrink: 1,
 justifyContent: 'center',
 }}
 >
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.zoomOutButton}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.zoomPopover}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.zoomInButton}
 </div>
 </div>
 <div
 style={{
 alignItems: 'center',
 display: 'flex',
 marginLeft: 'auto',
 }}
 >
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.fullScreenButton}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.openFileButton}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.downloadButton}
 </div>
 <div style={{ padding: '0 5px' }}>
 {toolbarSlot.moreActionsPopover}
 </div>
 </div>
 </div>
);
 };

 const layout = (
 isSidebarOpened,
 main,
 toolbar,
 sidebar
) => {
 return (
 <div
 style={{
 border: '1px solid rgba(0, 0, 0, .3)',
 display: 'grid',
 gridTemplateAreas: "'toolbar toolbar' 'sidebar main'",
 gridTemplateColumns: '30% 1fr',
 gridTemplateRows: '40px calc(100% - 40px)',
 height: '100%',
 overflow: 'hidden',
 width: '100%',
 }}
 >
 <div
 style={{
 alignItems: 'center',
 backgroundColor: '#EEE',
 borderBottom: '1px solid rgba(0, 0, 0, .1)',
 display: 'flex',
 gridArea: 'toolbar',
 justifyContent: 'center',
 padding: '4px',
 }}
 >
 {toolbar(renderToolbar)}
 </div>
 <div
 style={{
 borderRight: '1px solid rgba(0, 0, 0, 0.2)',
 display: 'flex',
 gridArea: 'sidebar',
 justifyContent: 'center',
 }}
 >
 {sidebar.children}
 </div>
 <div
 {...main.attrs}
 style={Object.assign({}, {
 gridArea: 'main',
 overflow: 'scroll',
 }, main.attrs.style)}
 >
 {main.children}
 </div>
 </div>
);
 };

 return (
 <Worker workerUrl="https://unpkg.com/pdfjs-dist@2.2.228/build/pdf.worker.min.js">
 <Viewer
 fileUrl='dummy.pdf'
 layout={layout}
 />
 </Worker>
);
}

The default layout is the following:

┌───────────┬───────────┐
│ toolbar │ toolbar │
├───────────┼───────────┤
│ sidebar │ main │
└───────────┴───────────┘

In the code above, we reference those parts in the places we wish to place in the layout component. The children attribute has the parts of each component. attrs has the default props of each component, which we can change.

The renderToolbar function is a higher-order component that takes a toolbarSlot prop, which has the parts of the toolbar and we can place them accordingly according to our needs. In the example above, we put them in different divs and added our own styles to each div.

The grid above is a CSS grid, so we can modify the layout as we please and it’ll will in all modern browsers.

Those pats are passed in as props in the layout component. So we can reference them directly from the parameters of layout.

Conclusion

The react-pdf-viewer package is a very useful PDF viewer that’s designed with both performance and usability in mind. The default layout and controls are already very good. Performance comes from loading PDFs in the background with a web worker.

It’s also very customizable, we can define a layout component that has toolbar, sidebar and main as props and then we can customize them as we wish.

Related Posts

	
Getting Started with React and JSXReact is a library for creating front end views. It has a big ecosystem of…

	
How to Add Browser Notifications to Your React AppWith the HTML5 Notification API, browsers can display native popup notifications to users. With notifications,…

	
How To Use React Router With ReactIf you want to make a single-page app with React, you need to add routing…

		

	

	
		
	
		
					

		
			By John Au-Yeung		

	

	
		Web developer specializing in React, Vue, and front end development.

		
			View Archive →		
	

	
	

	
	

		

		

			
				
					←
					Useful Vue Notification Components That’ll Save You Time
				

				
				
					→
						Add Captchas to a React App with reaptcha
				
				
		

		

	

	
		

				
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

 Save my name, email, and website in this browser for the next time I comment.

					Current ye@r *
					
					
				

					Leave this field empty
					
				

	

	
		

		

			

				

					

						©
							2024							The Web Dev
						

						
						
							
								Powered by WordPress							
						

					

					
						
							To the top ↑						
						
							Up ↑						
					

				

			

		

	
	
	

