Sometimes, we want to convert JSON to Pandas DataFrame with Python.
In this article, we’ll look at how to convert JSON to Pandas DataFrame with Python.
How to convert JSON to Pandas DataFrame with Python?
To convert JSON to Pandas DataFrame with Python, we can use the json.loads
method to load the JSON string into a dictionary.
Then we call Panda’s json_normalize
function to convert the JSON to a data frame.
For instance, we write:
import pandas as pd
import json
j = '''
{
"results": [{
"elevation": 243.3462677001953,
"location": {
"lat": 42.97404,
"lng": -81.205203
},
"resolution": 19.08790397644043
}, {
"elevation": 244.1318664550781,
"location": {
"lat": 42.974298,
"lng": -81.19575500000001
},
"resolution": 19.08790397644043
}],
"status": "OK"
}
'''
data = json.loads(j)
df = pd.json_normalize(data['results'])
print(df)
We call json.loads
with the j
JSON string to load the JSON string into a dictionary.
Then we call pd.json_normalize
with the values we want to convert into a DataFrame and assign that to df
.
Therefore, df
is:
elevation resolution location.lat location.lng
0 243.346268 19.087904 42.974040 -81.205203
1 244.131866 19.087904 42.974298 -81.195755
Conclusion
To convert JSON to Pandas DataFrame with Python, we can use the json.loads
method to load the JSON string into a dictionary.
Then we call Panda’s json_normalize
function to convert the JSON to a data frame.